If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-18c+32=0
a = 1; b = -18; c = +32;
Δ = b2-4ac
Δ = -182-4·1·32
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-14}{2*1}=\frac{4}{2} =2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+14}{2*1}=\frac{32}{2} =16 $
| 6x+3-4=41 | | 17+4b=-33 | | 8x+9-3x=9 | | 4.17n+3.29=2.74 | | 2x=35=4 | | 6(x-7)=4(2x-15) | | 0.21=0.09/x | | 45x=32 | | 5(3x-2)=3x | | (3x-42)=(2x+17) | | 4t+5=18 | | -0.43=10.36-x | | 7x^-10x=0 | | -32v+18v=25v-195 | | 5x-16=0x+9 | | 2x+13=6x+9 | | 15x-5=5(x-1) | | 128h-86=6 | | 6690-1160=y | | Y=3/2(1250-y) | | 9z+7z-4=6 | | 10m+0.8=6m-17.2 | | 6x+59+3x-14=90 | | 5x/4-1=29 | | 5x^2-41+8=0 | | 9(z+1)-3(z-1)=2(z-2)+3(z-4) | | 11-3n=n-1 | | X=3(20000-x) | | 1.5x-15.5=x+6 | | −17=−(10−q) | | 7x-5=-28 | | 13(g+2)-11=67 |